Burst Detection in Social Media Streams for Tracking
Interest Profiles in Real Time

Cody Buntain
Dept. of Computer Science
University of Maryland
College Park, Maryland 20742

cbuntain@cs.umd.edu

ABSTRACT

This work described RTTBurst, an end-to-end system for ingest-
ing a user’s interest profiles that describe some topic of interest and
identifying new tweets that might be of interest to that user using a
simple model for bursts in token usage. We laid out RTTBurst’s
architecture, our participation in and performance at the TREC
2015 Microblog Track, and a post hoc analysis for increasing RT-
TBurst’s performance. While not as relatively performant in the
Microblog Track’s real-time notification task, RTTBurst did per-
form well (ranking 4th overall and second in the automatic category
of Scenario B) in providing daily summaries for various interest
profiles. Following the official TREC evaluation period, we were
also able to increase RTTBurst’s performance but not by enough to
significantly increase its overall ranking.

CCS Concepts

eInformation systems — Summarization; Social tagging sys-
tems; eHuman-centered computing — Social networking sites;

Keywords
ACM proceedings; ISIEX; text tagging

1. INTRODUCTION

A significant power of social media is the rapidity with which
new information is posted and shared. If a user is interested in a
particular item, event, or topic, she can often provide a few rele-
vant keywords to a social network’s search function and track new
developments by reading recent postings. For instance, one can
track tweets mentioning “goal” on Twitter during the 2014 World
Cup to follow when goals are scored [5]. If a user wants to track
some interesting event on current social media platforms, however,
she must remain at her computer and manually filter through poten-
tially many duplicate posts to track the event. At the 2015 National
Institute of Standards and Technology (NIST) Text Retrieval Con-
ference (TREC), several teams came together to address this prob-
lem by automating this tracking and summarization of interesting
events, or “interest profiles,” in TREC’s Microblogs Track [13].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Copyright held by the authors.

Jimmy Lin
Cheriton School of Computer Science
University of Waterloo
.. Waterloo, Ontario
jimmylin@uwaterloo.ca

This paper describes RTTBurst!, one of the systems participating
in TREC’s 2015 microblog track, and its use of linear regression to
detect bursts in Twitter’s social media stream in real time.

At a high level, our approach with RTTBurst is to generate vec-
tors of frequency data from a sliding window over the past few
minutes for each token in Twitter’s 1% stream filtered according to
the user’s interest profile, fit this frequency data to an exponential
curve, and tag tokens with steep exponential increases as “bursty.”
We make the assumption that bursts in the Twitter stream surround-
ing an user’s interest profile denotes a significant or noteworthy
moment relevant to that profile. We then extract Twitter messages,
or tweets, containing the most bursty tokens to summarize this mo-
ment surrounding the burst. In this work, we detail RTTBurst’s
mechanics, how it determines messages relevant to a user’s inter-
est profile, and the steps needed to construct a system capable of
processing Twitter’s 1% stream in real time. We then describe our
method for tuning RTTBurst given the data from both scenarios
of TREC’s 2015 Microblog track and the relative performance be-
tween RTTBurst and other systems participating in this track.

This work makes the following contributions:

e Presents a real-time streaming algorithm and feature set for
the discovery and description of important moments relevant
to a user’s interests from Twitter’s public sample stream, and

o Details RTTBurst’s performance relative to similar systems.

2. RELATED WORK

Though RTTBurst focuses on the slightly different problem of
discovering interesting moments in social media streams, our work
shares foundations with classical event detection research. Identi-
fying key events from the ever-growing body of digital media has
fascinated researchers for over twenty years, starting from digital
newsprint to blogs and now social media [1]. Early event detection
research followed that of Fung et al. in 2005, who built on the burst
detection scheme presented by Kleinberg by identifying bursty key-
words from digital newspapers and clustering these keywords into
groups to identify bursty events [8, 7]. This work succeeded in
identifying trending events and showed such detection tasks are
feasible. Recognizing that newsprint differs substantially from so-
cial media both in content and velocity, the research community
began experimenting with new social media sources like blogs,
but real gains came when microblogging platforms began their rise
in popularity. These microblogging platforms include Twitter and
Sina Weibo and are characterized by constrained post sizes (e.g.,
Twitter constrains user posts to 140 characters) and broadcasting
publicly consumable information.

!Code for this system is available at https:/github.com/cbuntain/
UMD_HCIL_TREC2015

One of the most well-known works in detecting events from mi-
croblog streams is Sakaki, Okazaki, and Matsuo’s 2010 paper on
detecting earthquakes in Japan using Twitter [18]. Sakaki et al.
show that not only can one detect earthquakes on Twitter but also
that it can be done simply by tracking frequencies of earthquake-
related tokens. Surprisingly, this approach can outperform geolog-
ical earthquake detection tools since digital data propagates faster
than tremor waves in the Earth’s crust. Though this research is lim-
ited in that it requires pre-specified tokens and is highly domain-
and location-specific (Japan has a high density of Twitter users,
so earthquake detection may perform less well in areas with fewer
Twitter users), it demonstrates a significant use case and the poten-
tial of such applications.

Along with Sakaki et al., 2010 saw two other relevant papers:
Lin et al’s construction of a probabilistic popular event tracker
[11] and Petrovié, Osborne, and Lavrenko’s application of locality-
sensitive hashing (LSH) for detecting first-story tweets from Twit-
ter streams [15]. Lin’s work demonstrated that the integration of
non-textual social and structural features into event detection could
produce real performance gains. Like many contemporary systems,
however Lin’s models require seeding with pre-specified tokens to
guide its event detection and concentrates on retrospective per-day
topics and events. In contrast, Petrovic et al.’s clustering research in
Twitter avoids the need for seed keywords and retrospective analy-
sis by instead focusing on the practical considerations of clustering
large streams of data quickly. While typical clustering algorithms
require distance calculations for all pairwise messages, LSH fa-
cilitates rapid clustering at the scale necessary to support event
detection in Twitter streams by restricting the number of tweets
compared to only those within some threshold of similarity. Once
these clusters are generated, Petrovi¢ was able to track their growth
over time to determine impact for a given event. This research was
unique in that it was one of the early methods that did not require
seed tokens for detecting events and has been very influential, re-
sulting in a number of additional publications to demonstrate its
utility in breaking news and for high-impact crisis events [14, 16,
17]. Petrovi¢’s work and related semantic clustering approaches
rely on textual similarity between tweets, which limits its abil-
ity to operate in mixed-language environments and differentiates
LABurst and its language agnosticism.

Similar to Petrovi¢, Weng and Lee’s 2011 paper on EDCoW,
short for Event Detection with Clustering of Wavelet-based Sig-
nals, is also able to identify events from Twitter without seed key-
words [21]. After stringent filtering (removing stop words, com-
mon words, and non-English tokens), EDCoW uses wavelet analy-
sis to isolate and identify bursts in token usage as a sliding window
advances along the social media stream. Besides the heavy filtering
of the input data, this approach exhibits notable similarities with the
language-agnostic method we describe herein with its reliance on
bursts to detect event-related tokens. These methods, however, op-
erate retrospectively, focusing on daily news rather than breaking
event detection on which our research focuses. Becker, Naaman,
and Gravano’s 2011 paper on identifying events in Twitter also fall
under retrospective analysis, but their findings also demonstrate
reasonable performance in identifying events in Twitter by lever-
aging classification tasks to separate tweets into those on “real-
world events” versus non-event messages [2]. Similarly, Diao et
al. also employ a retrospective technique to separate tweets into
global, event-related topics and personal topics [6].

Many researchers have explored motivations for using platforms
like Twitter and have shown interesting dynamics in our behav-
ior around events with broad impact. For instance, Lehmann et
al.’s 2012 work on collective attention on Twitter explores hashtags

and the different classes of activity around their use [10]. Their
work includes a class for activity surrounding unexpected, exoge-
nous events, characterized by a peak in hashtag usage with little
activity leading up to the event, which lends credence to our use
of burst detection for identifying such events. Additionally, this in-
terest in burst detection has led to several domain-specific research
efforts that also target sporting events specifically[20, 23, 9]. Lana-
gan and Smeaton’s work is of particular interest because it relies
almost solely on detecting bursts in Twitter’s per-second message
volume, which we use as inspiration for one of our baseline meth-
ods discussed below. Though naive, this frequency approach is
able to detect large bursts on Twitter in high-impact events without
complex linguist analysis and performs well in streaming contexts
as little information must be kept in memory. Detecting such bursts
provide evidence of an event, but it is difficult to gain insight into
that event without additional processing. LABurst addresses this
need by identifying both the overall burst and keywords related to
that burst.

More recently, Xie et al.’s 2013 paper on TopicSketch seeks to
perform real-time event detection from Twitter streams “without
pre-defined topical keywords” by maintaining acceleration features
across three levels of granularity: individual token, bigram, and
total stream [22]. As with Petrovi¢’s use of LSH, Xie et al. lever-
age “sketches” and dimensionality reduction to facilitate event de-
tection and also relies on language-specific similarities. Further-
more, Xie et al. focus only on tweets from Singapore rather than
the worldwide stream. In contrast, our approach is differentiated
primarily in its language-agnosticism and its use of the unfiltered
stream from Twitter’s global network.

Despite this extensive body of research, it is worth asking how
event detection on Twitter streams differs from Twitter’s own offer-
ings on “Trending Topics,” which they make available to all their
users. When a user visit’s Twitter’s website, she is immediately
greeted with her personal feed as well as a listing of trending topics
for her city, country, worldwide, or nearly any location she chooses.
These topics offer insight into the current popular topics on Twit-
ter, but the main differentiating factor is that these popular topics
are not necessarily connected to specific events. Rather, popular
memetic content like “#MyLovelifelnMoveTitles” often appear on
the list of trending topics. Additionally, Twitter monetizes these
trending topics as a form of advertising [19]. These trending topics
also can be more high-level than the interesting moments we seek
to identify: for instance, during the World Cup, particular matches
or the tournament in general were identified as trending topics by
Twitter, but individual events like goals or penalty cards in those
matches were not. It should be clear then that Twitter’s trending
topics serves a different purpose than the streaming event detection
described herein.

3. METHODS

This section describes the stages that comprise the RTTBurst
pipeline, followed by an overview of the parameter optimization
process we used to determine “good” values for RTTBurst’s hyper
parameters.

3.1 RTTBurst Pipeline

RTTBurst’s high-level pipeline is composed of several stages:
1. Identify tokens relevant to a user’s interests,
2. Filter Twitter’s 1% sample stream for relevant tweets,

3. Identify tokens currently experiencing a burst in usage,

4. Summarize the bursty moment, and

5. Return relevant tweets to the user.

Each stage is described below.

3.1.1 Parsing Interest Profiles

TREC 2015’s Microblog track was built around a real-time fil-
tering task targeting the Twitter social network platform and its 1%
public sample stream (an unfiltered stream containing a random
subset of all tweets being posted to Twitter) [13]. As mentioned
in the track’s 2015 overview paper by Lin et al, this filtering task’s
goal is to identify new tweets relevant to a set of given interest pro-
files, each of which is comprised of a unique identifier, title (a few
keywords describing the information need), a brief one-sentence
description, and a paragraph-length narrative describing the topic
of interest. One can then extract keywords from these interest pro-
files to discard tweets from Twitter’s 1% sample stream that do are
not relevant to the interest profiles.

For our work, we processed each profile’s title and disregarded
the profile’s description and narrative. While one could leverage
query expansion with the description and narrative fields, our ex-
perience with the sample topics suggested the keywords in the title
field had the most signal and were the least ambiguous. For ex-
ample, interest profile MB227 had the title, “Pradaxa side effects,”
with the description, “Find information on the negative side effects
associated with the blood thinning drug Pradaxa,” but keywords
like “information” and “associated” are low-signal tokens.

To extract keywords from an interest profile’s title, we leveraged
two libraries: Benjamin Piwowarski’s datasets® package to parse
the the TREC topic files, and Python’s Natural Language Toolkit
(NLTK) [3]. With the NLTK package, we were able to remove stop
words and lemmatize keywords and get a cleaner keyword set for
filtering. As an example, RTTBurst would ingest the title, “arson
fires in inner cities,” and produce the following tokens for filtering:
“arson,” “fire,” “inner,” and “city.”

3.1.2 Filtering the Twitter Sample Stream

After collecting keywords relevant to the given interest profiles,
RTTBurst leveraged Apache Spark’s® built-in Twitter receiver to
collect all tweets from the public sample stream. Each tweet was
tokenized using CMU’s ARK TweetNLP tokenizer*. We then ap-
plied a series of quality metrics to remove non-English tweets and
low-quality tweets with more than three hashtags, more than five
web links (URLs), fewer than two tokens, and any tweet containing
the string “follow” (motivated by the large amount of “follow-me”
spam where Twitter users ask others to follow them).

3.1.3 Identifying Bursty Tokens

Our first step in identifying bursty tokens was to capture how
a token’s usage changes over time. The Spark Streaming library
provides such a mechanism with its sliding window functionality.
We maintained a sliding window over all tweets generated by the
Twitter streaming API within the past 2 minutes and incremented
the window by 60-second time slices. Therefore, each window had
an overlap with the previous 60 seconds to smooth the input.

For each 2-minute window, we calculated the number of users
tweeting with each token and stored this frequency over the previ-
ous N windows. We normalize these frequencies by the number
of unique tokens in the past N windows and use add-one additive

% Available at https://github.com/bpiwowar/datasets
3https://spark.apache.org
*http://www.cs.cmu.edu/~ark/TweetNLP/

smoothing to correct for tokens with zero occurrences in a single
window. Following the features set forth in the paper by Buntain
et al. in 2016, we then used the Apache Commons linear regres-
sion library to fit a line to the natural log of this frequency data [4].
By transforming this frequency data to the logarithmic space, expo-
nential curves will appear linear, simplifying the linear regression
step, and the steeper the slope of the best-fit line, the steeper the
exponential growth of the token’s usage. Based on this fit, we then
scored each token by the product of the slope of the best-fit line and
its Pearson’s R? coefficient. Since Pearson’s R? coefficient is in
the range [—1, 41], this product reduced scores for highly deviant
frequency curves. In this manner, tokens experiencing large bursts
in usage, which we would expect to exhibit exponential growth,
were scored highly. We then discarded all tokens with scores be-
low a burst threshold «y and any token whose length is less than four
characters.

3.1.4 Moment Summarization

Every sixty seconds, RTTBurst identified a new (possibly empty)
set of bursty tokens, which correspond to moments of note in the
relevant interest profile. For TREC’s Microblog track, however,
returning these bursty tokens was not adequate for summarizing
the moment. Rather, the Microblog track required systems to return
tweets to summarize these moments similar to the ReDites system
proposed by Osborne and colleagues [14].

To this end, every sixty seconds, RTTBurst parsed all tweets in
the previous N windows to create a subset of tweets containing
these bursty tokens. We then calculated a Jaccard similarity score
for each tweet in this subset by comparing the tweet to tweets re-
turned to the user in previous windows. Any new tweet whose Jac-
card similarity was above our threshold J; = 0.7 was discarded,
and the remaining tweets were sorted by their similarity scores in
decreasing order. Finally, the top M least similar tweets contain-
ing bursty tokens from the past N windows were assigned to the
relevant interest profiles and stored.

3.1.5 Relevant Tweet Selection

RTTBurst’s final step before pushing a tweet to a user included
one last pass through the tweets to select those that were most rel-
evant to the given interest profile. For each candidate tweet stored
up to this point, RTTBurst then selected only those tweets that con-
tained at least X tokens from the relevant interest profile. All other
tweets were then discarded.

In summary, for Scenario A of TREC’s Microblog track, the top
10 most dissimilar tweets containing bursty tokens and at least two
tokens from the relevant interest profile were returned to the user
per day. Scenario B followed the same pipeline with the additional
relaxation of returning the top 100 most dissimilar tweets.

3.2 Parameter Optimization

In the previous few sections, we described the RTTBurst system
and mentioned a set of important parameters that control the sys-
tem. The most important parameters were the threshold for bursty
tokens +, the number of windows IV over which to track frequency,
and the number of tweets M to save per minute. To determine
appropriate settings for these main parameters, we ran RTTBurst
through a randomized parameter optimization following the offi-
cial run for the 2015 TREC Microblog tasks.

We bound the number of windows N € [5,45], the number of
tweets per minute M € [10,50], and the burst score threshold -y
within the top 10% of the burst scores generated for that setting of
N. For the number of tokens X required for relevance selection,
we used both X = 1,2 during the TREC experiment and fixed

it at X = 2 for our post hoc analysis. Other parameters like the
maximum number of hashtags or the maximum Jaccard similarity
were considered fixed.

Owing to time constraints and the amount of time necessary to
run RTTBurst against the full 10-day period covered by TREC’s
Microblog track, we only ran this parameter optimization with ten
random values of N and ten values for M and . For each of
these parameter sets, we ran RTTBurst on the entire 10-day time
period, against all 51 topics in the TREC evaluation set, and scored
each run using the scenario A and scenario B evaluation scripts
provided by the TREC organizers. Since these runs were against
Twitter’s entire 1% sample stream and the TREC organizers could
not possibly score each tweet in the stream for relevance to the
interest profiles, some tweets returned by RTTBurst do not have
associated relevance scores for these tasks, so we omit those tweets
and report the number of such tweets in the results section below.

Table 1: Official TREC 2015 Scores, Scenario A

Run ELG nDG
Type A | 0.2471 | 0.2471
Type B | 0.2020 | 0.2020

Table 2: Official TREC 2015 Scores, Scenario B

Run | nDCG@10
Type A 0.2471
Type B 0.2020

4. RESULTS

We divide our results into two sets: The first covers official re-
sults from the real-time Microblog task as scored by NIST, and the
second covers results from our post hoc runs using the relevance
and scoring data provided by NIST after the official run.

4.1 Oftficial NIST Results

The version of RTTBurst deployed in July of 2015 was simpler
than the version described in the previous section. Primarily, the
original RTTBurst implementation did not employ several of the
tweet quality metrics (i.e., it did not filter out tweets with many
hashtags, many links, or few tokens). The original version did dis-
card non-English tweets and tweets including the string “follow”
however. In addition, the first version of RTTBurst did not include
mechanisms for preventing duplicate tweet content from being re-
ported to the user. Prior to using these quality metrics, it became
clear that a significant amount of spam was being caught by our
system. For example, while the original RTTBurst implementation
did prevent the same tweet ID from being reported twice, two dif-
ferent tweets with the same content might still be reported, and we
saw many Twitter bots spamming the same tweet content with only
slight differences (one token at the end of the tweet might differ
from one spam tweet to the next).

For both scenarios in the 2015 Microblog track, RTTBurst used
the following parameter settings: v = 0.07, N = 30, and M =
10. Furthermore, we submitted two runs for both scenarios: type
“a,” in which we required each tweet reported to the user to include
two tokens from the relevant interest profile, and type “b,” where

we required only one token to be present in both the tweet and
interest profile.

For the track’s mobile notification scenario (Scenario A), our
scores after deploying RTTBurst and submitting our results to NIST
are shown in Table 1. The scoring metrics used for Scenario A
were Expected Latency Gain (ELG) and normalized Cumulative
Gain (nCG) (see the Microblog Track overview paper for more de-
tails on these metrics [13]). For the email digest scenario (Scenario
B), our scores are shown in Table 2. The only scoring metric in
Scenario B was normalized Discounted Cumulative Gain (nDCG)
for the first ten (10) tweets per day (nDCG@10) (again, see the
Microblog Track overview paper for more details [13]).

4.2 Post Hoc Results

Following the official run in July and the following TREC con-
ference, we implemented the additional tweet similarity and quality
metrics described above. Given the poor performance of the type
“b” version (requiring only a single token overlap between returned
tweets and interest profiles), our post hoc analysis used only our
type “a” version, thereby requiring two tokens in common between
reported tweets and interest profiles. Parameter optimization cov-
ered v, N, M, and two sets of tweet quality metrics. A list of the
highest-scoring parameters is shown in Table 3, and score graphs
for each parameter are shown in Figure 1. From the graphs, it seems
the window count parameter N has the strongest positive correla-
tion, and scores with the number of tweets returned per minute M
having the least correlation.

Following these post hoc runs, our highest scores would not sig-
nificantly increase RTTBurst’s rankings in the official results; for
Scenario A, RTTBurst would move up two spots, from 14th to 12th,
and Scenario B would see no change.

5. DISCUSSION

In reviewing the results above and those from the Microblog
overview paper by Lin et al., it appears higher scores are associ-
ated with fewer reported tweets. This result is confirmed by the
score for a system that returns no tweets at all: an ELG, nCG, and
nDCG@10 of 0.2471. Therefore, a system that returns nothing
would rank 14th out of 37 in Scenario A and 4th out of 42 for Sce-
nario B. While we were able to increase our performance beyond
this silent baseline in our post hoc analysis, an interesting correla-
tion presented itself between the number of tweets returned by RT-
TBurst and the scores achieved. As shown in Figure 2, a strongly
negative, nearly linear correlation (R?> = 0.8172) exists between
the more tweets RTTBurst returns to the user, the lower the score
produced by the TREC evaluations.

6. LIMITATIONS

A persistent issue with our post hoc analysis is the presence of
unevaluated tweets, which makes a true performance comparison
between our previous runs and post hoc runs difficult. That is,
while the NIST judges provided relevance assessments for approxi-
mately 94k tweets, the Twitter sample stream over the TREC evalu-
ation period contains around 40 million tweets, so it is highly likely
post hoc runs of RTTBurst may return tweets without relevance as-
sessments. Going forward, we need to explore better methods for
scoring these unjudged tweets or comparing judged and unjudged
tweets and scores.

Another limitation present in RTTBurst is the absence of query
expansion techniques. RTTBurst was originally designed as an
open-domain system without tracking capabilities, and the modifi-
cations to the system to capture tweets relevant only to specific in-

Table 3: Best-Scoring Parameters After Optimization

Window Count N | Tweets Per Minute M | Threshold v | SA Scored/Unscored | ELG nCG | SB Scored/Unscored | nDCG
37 13 0.036854 6/8 0.2549 | 0.2464 6/19 0.2420
18 34 0.138824 3/5 0.2525 | 0.2494 3/11 0.2479
37 48 0.067306 4/1 0.2506 | 0.2479 4/2 0.2489
0.26 0.26 0.26
0.25 0.25 0.25
0 023 , 023 , 023
S 0.22} S 0.22 5022
7021 — ELG 7021 — ELG "o021tf — ELG
0.20} = nCG 0.20t| =—= nCG 0.20t+| =—= nCG
0.19+ e—e nDCG 0.19| e— nDCG 0.19f| e—e nNDCG
018—35"15 20 25 30 35 40 45 0-38600.050.100.150.200.250.300.350.400.45 01855 20 25 30 35 40 45 50

Window Count

(a) Scores Over Window Counts

Burst Threshold
(b) Scores Over Burst Thresholds

Max Tweets Per Minute

(c) Scores Over Tweets Per Minute

Figure 1: Scores Over Individual Parameters

1.2 ‘ ‘ ‘ ‘
1.0 . — Best Fit
ELG Scores | |

W,
7%

0.8f)
0.6}
0.4¢
0.2-
0.0} .
-0.2

“02 00 02 04 06 08 1.0 1.2
Normalized Returned Tweets

nNulilialiZcu cLy

Figure 2: Tweets Versus Scores

terest profiles was not very nuanced (i.e., discarding tweets that do
not contain lemmatized tokens from the interest profile). Modern
information retrieval systems employ more principled approaches
to expanding queries, and an interest profile is essentially a query.
Since RTTBurst does not include this kind of expansion, we are
potentially discarding many otherwise relevant tweets, something
that future versions of this system should address.

Finally, RTTBurst’s driving principal is that bursts in the usage
of specific tokens indicate an interesting event or moment surround-
ing that token. Examples supporting this assumption include bursts
in usage of the token “goal” during the World Cup when a player
scores or “kidschoice” during the Kids’ Choice Awards. In the-
ory, the moments that see such bursts are the moments about which
someone following the event would want to be notified. In an ideal
case, this theory might be adequate, but after participating the 2015
TREC Microblog Track, the influence of spam became a major is-
sue that our RTTBurst does not handle. Following interest profiles
related to Taylor Swift and Ariana Grande demonstrated that spam-
mers would try to drive visitors to websites by mentioning either or
both of these major celebrities, and many Twitter bots would post

large volumes of these spam tweets with small minor differences
between the messages (presumably to avoid Twitter’s own spam
filter). We initially did not expect spammers to be able to influence
the Twittersphere to such a degree, so future versions of RTTBurst
will require additional filtering mechanisms to sanitize this data.

7. CONCLUSIONS

This work described RTTBurst, an end-to-end system for ingest-
ing a user’s interest profiles that describe some topic of interest and
identifying new tweets that might be of interest to that user using a
simple model for bursts in token usage. We laid out RTTBurst’s
architecture, our participation in and performance at the TREC
2015 Microblog Track, and a post hoc analysis for increasing RT-
TBurst’s performance. While not as relatively performant in the
Microblog Track’s real-time notification task, RTTBurst did per-
form well (ranking 4th overall and second in the automatic category
of Scenario B) in providing daily summaries for various interest
profiles. Following the official TREC evaluation period, we were
also able to increase RTTBurst’s performance but not by enough
to significantly increase its overall ranking. Further steps could
be taken, however, to integrate modern information retrieval tech-
niques like query expansion and spam detection to increase RT-
TBurst’s performance. Given RTTBurst’s mathematically simple
model and its amenities for processing streams, its approach may
be useful in integrating with other systems as well.

8. ACKNOWLEDGMENTS

This work was supported in part by the National Science Foun-
dation under CNS-1405688 [12]. Any opinions, findings, conclu-
sions, or recommendations expressed are those of the authors and
do not necessarily reflect the views of the sponsors. This work also
made use of the Open Science Data Cloud (OSDC), which is an
Open Cloud Consortium (OCC) - sponsored project. The OSDC is
supported in part by grants from Gordon and Betty Moore Founda-
tion and the National Science Foundation and major contributions
from OCC members like the University of Chicago.

9.
(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

REFERENCES

J. Allan, R. Papka, and V. Lavrenko. On-line new event
detection and tracking. In Proceedings of the 21st annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 37-45. ACM,
1998.

H. Becker, M. Naaman, and L. Gravano. Beyond Trending
Topics: Real-World Event Identification on Twitter. ICWSM,
11:438-441, 2011.

S. Bird, E. Klein, and E. Loper. Natural language processing
with Python. " O’Reilly Media, Inc.", 2009.

C. Buntain, J. Lin, and J. Golbeck. Discovering Key
Moments in Social Media Streams. In Consumer
Communications and Networking Conference (CCNC), 2016
13th Annual IEEE, jan 2016.

L. Cipriani. Goal! Detecting the most important World Cup
moments. Technical report, Twitter, 2014.

Q. Diao, J. Jiang, F. Zhu, and E.-P. Lim. Finding bursty
topics from microblogs. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics:
Long Papers-Volume 1, pages 536-544. Association for
Computational Linguistics, 2012.

G. P. C. Fung, J. X. Yu, P. S. Yu, and H. Lu. Parameter free
bursty events detection in text streams. In Proceedings of the
31st international conference on Very large data bases,
VLDB ’05, pages 181-192. VLDB Endowment, 2005.

J. Kleinberg. Bursty and hierarchical structure in streams. In
Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD
’02, pages 91-101, New York, NY, USA, 2002. ACM.

J. Lanagan and A. F. Smeaton. Using twitter to detect and tag
important events in live sports. Artificial Intelligence, pages
542-545, 2011.

J. Lehmann, B. Gongalves, J. J. Ramasco, and C. Cattuto.
Dynamical Classes of Collective Attention in Twitter. In
Proceedings of the 21st International Conference on World
Wide Web, WWW 12, pages 251-260, New York, NY, USA,
2012. ACM.

C. X. Lin, B. Zhao, Q. Mei, and J. Han. PET: a statistical
model for popular events tracking in social communities. In
Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD
’10, pages 929-938, New York, NY, USA, 2010. ACM.

J. Lin. Hadoop NextGen Infrastructure for Heterogeneous
Approaches to Data-Intensive Computing. Award Abstract
CNS-1405688, National Science Foundation, 2014.

J. Lin, M. Efron, Y. Wang, G. Sherman, and E. Voorhees.
Overview of the TREC-2015 Microblog Track. In
Proceedings of the Twenty-Fourth Text REtrieval Conference
(TREC 2015), Gaithersburg, MD, 2015.

M. Osborne, S. Moran, R. McCreadie, A. Von Lunen,

M. Sykora, E. Cano, N. Ireson, C. Macdonald, I. Ounis,

Y. He, and Others. Real-Time Detection, Tracking, and
Monitoring of Automatically Discovered Events in Social
Media. Association for Computational Linguistics, 2014.

S. Petrovi¢, M. Osborne, and V. Lavrenko. Streaming First
Story Detection with Application to Twitter. In Human
Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for
Computational Linguistics, HLT *10, pages 181-189,
Stroudsburg, PA, USA, 2010. Association for Computational
Linguistics.

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

S. Petrovic, M. Osborne, R. McCreadie, C. Macdonald,

I. Ounis, and L. Shrimpton. Can Twitter replace Newswire
for breaking news? In Proceedings of the 7th International
AAAI Conference on Weblogs and Social Media, volume
2011, 2013.

J. Rogstadius, M. Vukovic, C. A. Teixeira, V. Kostakos,

E. Karapanos, and J. A. Laredo. CrisisTracker:
Crowdsourced social media curation for disaster awareness.
IBM Journal of Research and Development, 57(5):4:1-4:13,
sep 2013.

T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes
Twitter users: real-time event detection by social sensors. In
Proceedings of the 19th international conference on World
wide web, WWW ’10, pages 851-860, New York, NY, USA,
2010. ACM.

L. Sydell. How Twitter’s Trending Algorithm Picks Its
Topics, dec 2011.

V. Vasudevan, J. Wickramasuriya, S. Zhao, and L. Zhong. Is
Twitter a good enough social sensor for sports TV? In
Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2013 IEEE International
Conference on, pages 181-186. IEEE, 2013.

J. Weng and B.-S. Lee. Event Detection in Twitter. In
ICWSM, 2011.

W. Xie, F. Zhu, J. Jiang, E.-p. Lim, and K. Wang.
TopicSketch: Real-time Bursty Topic Detection from
Twitter. In Data Mining (ICDM), 2013 IEEE 13th
International Conference on, pages 837-846. IEEE, 2013.
S. Zhao, L. Zhong, J. Wickramasuriya, and V. Vasudevan.
Human as Real-Time Sensors of Social and Physical Events:
A Case Study of Twitter and Sports Games. CoRR,
abs/1106.4, 2011.

